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Abstract Pedigree testing, using genetic markers, may 
be undertaken for a variety of situations, of which the 
classical paternity testing is only one. This has not 
always been made clear in the literature. Exclusion 
probabilities associated with various testing situations, 
including the use of autosomal or X-linked codominant 
marker systems with any number of alleles, are pres- 
ented. These formulae can be used to determine the 
appropriate exclusion probability for the situation be- 
ing investigated. One such situation is where sire groups 
of progeny are to be verified without knowledge of the 
dams' genotypes, in which case the classical paternity 
exclusion probability is too high, and if used may result 
in an optimistic declaration about the progeny that have 
not been excluded. On the other hand, if mating pairs 
are known then incorrect progeny can be excluded at a 
higher rate than suggested by paternity exclusion calcu- 
lations. The formulae also assist in determining the 
usefulness of X-linked markers, particularly if the pedi- 
gree checks involve progeny of only one sex. A system of 
notation that is useful for the algebraic manipulation of 
genetic probabilities, including exclusion probabilities 
as presented here, is also given. 

Key words Parentage tests �9 Exclusion probabilities �9 
Genetic markers 

Introduction 

In extensively farmed animals, such as sheep and cattle, 
accurate pedigree records usually rely on a variety of 
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factors, including secure containment of animals, direct 
evidence of mating and observation of parturition or 
suckling activity (Alexander et al. 1983). Genetic gain in 
animal improvement programmes is sensitive to pedi- 
gree misidentifications, particularly where there is ex- 
tensive use of artificial breeding technologies or the 
number of offspring are limited (Geldermann et al. 
1986). Additionally, for some aspects of animal breeding 
research a very small number of incorrect relationships 
could have a large influence on the results, for example 
when searching for segregation in traits (Elston and 
Stewart 1971; Kinghorn et al. 1993) or when using lin- 
ked markers to predict genotypes at specific loci (God- 
dard 1992). 

Hypothesized familial relationships of organisms can 
be tested using variation in inherited genetic markers, 
but the power of such tests depends on the exact hypoth- 
esis in question. In humans, for example, the relation- 
ship of a child to its mother is usually assumed to be 
correct, and tests are made to determine whether the 
putative father might be the biological father. If the 
putative father has a genotype incompatible with the 
child in question, then he is excluded from paternity. 
However, if the putative father is compatible there are 
two possibilities: he may either be the genuine father or 
an unrelated man who, by chance, has a compatible 
genotype. 

We often wish to know how likely we are to uncover 
whether a putative pedigree is incorrect; this is termed 
an exclusion probability. For example, paternity exclu- 
sion is the probability of a randomly chosen male being 
excluded from paternity for a randomly chosen mother- 
offspring pair. Exclusion probabilities associated with 
paternity testing have been dealt with extensively (Boyd 
1954; Jamieson 1965; Chakraborty et al. 1974; Jamieson 
1994). 

However, there are situations, particularly in pedi- 
gree recording of farmed animals, where we may not be 
willing to assume that the dam-offspring assignment is 
unambiguous but that there may be some other rela- 
tionship we assume (Kashi et al. 1990). Alternatively, we 
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m a y  wish to verify only one of the parents,  with the other  
unknown  or not  of interest. Fo r  example,  where only the 
s i re-dam mat ing  assignments  are known,  we m a y  want  
to test whether  a puta t ive  offspring belongs to the 
parent-pair .  Pedigree er ror  rates in farm animals, asso- 
ciated with this and other  situations, have been exam- 
ined using genetic var ia t ion (McCoubrey  et al. 1983; 
Tate  et al. 1992), a l though formal  derivat ion and  com- 
par ison of the probabi l i ty  of exclusion for each si tuation 
has not  been presented. The fact that  different pedigree 
testing situations exist, with different exclusion prob-  
abilities, has not  always been clear in the literature. 
Typical ly paterni ty  exclusion probabil i t ies have been 
quoted  no mat te r  what  the si tuat ion (Mark lund  et al. 
1994; P6pin et al. 1995). 

In mos t  farm animals, there is now a wide choice of 
suitable codominan t ly  inherited genetic marke r s  of 
known c h r o m o s o m a l  locat ion (Barendse et al. 1994; 
Bishop et al. 1994; Rohrer  et al. 1994; Burt  et al. 1995; 
Crawford  et al. 1995). This technology enables strategic 
testing to a predetermined probabi l i ty  of exclusion to 
minimize the confounding effects of pedigree errors. 

Some authors  have discussed paterni ty  exclusion 
with dominan t  systems (Wiener et al. 1930: Boyd 1954; 
Weiner  1975; Bucher and Elston 1995; Weir 1990) such 
as the ABO h u m a n  b lood  group  system. Fo r  two alleles, 
with the dominan t  allele at frequency p, the paterni ty  
exclusion is p(1 - p)4, which gives a m a x i m u m  exclusion 
of 0.082 when p = 0.2 (less than half  the best possible 
codominan t  two-allele case). As exclusion probabil i t ies 
are less for dominan t  than  for codominan t  systems, and 
because of the availabil i ty of codominan t  markers ,  we 
will concern ourselves with codominan t  systems only. 

We derive the exclusion probabi l i ty  formulae  for a 
variety of situations, relevant  part icularly to farm ani- 
mals, of which the classical paterni ty  testing is only one. 
While some of these probabil i t ies have previously been 
given explicitly (Jamieson 1965; Crawford  et al. 1993) or 
implicitly (Meagher  and T h o m p s o n  1986), the present  
paper  presents the derivat ions for the different situ- 
at ions in a unified manner .  Both au tosomal  and 
homogame t i c  sex-linked codominan t  m a rke r  systems 
are examined,  and the formulae  presented allow for any 
n u m b e r  of alleles in a system. When  referring to the 
sex-linked si tuat ion we use m a m m a l i a n  terminology.  
We also present  a system of notat ion,  referred to as the 
S-notat ion,  that  is useful for the algebraic manipu la t ion  
of genetic probabili t ies,  including exclusion probabi l i -  
ties. We outline the relat ionships between these prob-  
abilities of exclusion and  discuss the effectiveness 
of au tosomal  or X-linked markers  in different test 
situations. 

S-Notation 

Definitions 

We consider a marker locus with m alleles, with Pl denoting the 

frequency of A i the ith allele. We also let 

s, =Ep i 
i 

= 2 2 pZ 

St.~ = Z E Z p:p~.p2 
ir e. j ~  k 

S . . . .  = Z Z Z Z PlP~P~Pl ~ (1) 
i#  j,a k#  I 

where i , j ,  k and 1 all range from 1 to m; summation subscripts such as 
i # j  # k indicate that the first sum is over all i, the second is forj # i 
and the third is for k # i, k # j  and so on; and t, u, v and w are arbitrary 
non-negative integers. Although we deal only with exclusion prob- 
abilities, the S-notation and properties (see below) are also useful for 
other genetic probability calculations. 

Because the order of the subscripts in S quantities is irrelevant to 
the definitions, we will use the convention of ordering the subscripts 
by size, e.g. we use $21 and not $12. Also, because the sums are defined 
in terms of p subscripts being different, but of any order (i.e. i <j or 
i >j), the probabilities of allele sets need to take this into account, as 
shown in the following examples. Unless noted otherwise, alleles 
designated with different subscripts will refer to different alleles. 

In this section, we illustrate the notation with examples, along 
with their interpretation (assuming a population in Hardy-Weinberg 
equilibrium). The probability of the genotype A i A  J, (i # j )  is PiP j, and 
the sum of all such probabilities (i.e. the probability of a heterozygote) 
is S 1 r Another example is to caIculate the probability that mates are 
both homozygous, but for different alleles. In this case we want the 

2 2 probability of the pair ofgenotypes AiA i and A j A j ,  i # j ,  which is p~ p~. 
Summing over all possible combinations of i Cj gives the probability 
$ 2 2 .  

E x a m p l e :  T w o - a l l e l e  case  

Suppose m = 2, with one allele having frequency p and the other 
q(= 1 -p). We find that S 11 = 2pq,  which is the probability of an A 1A2 
individual, and $22 = 2p2q  2, which corresponds to the first individual 
being A 1AI (with probability p2) and the mate being A 2 A 2 ( q  2) or vice 
versa (with the same probability). 

Properties 

An S quantity with h subscripts is equal to zero if the marker system 
has fewer than h distinct alleles. This follows from the fact that such an 
S quantity is defined as a sum over all combinations of sets of h 
distinct alleles. Some additional properties are as follows: 

S o = m (the number of distinct alleles) 

S~= 1 

St .  = S tS  u - S<t +,) 

St ,  v = St,,S v - S(~ + v), - S<,, + v)t 

S, .v, .  = Sr.~S w - S(t + w).~ - S( .  +..)t~ - S(v +,~.)t,, (2) 

An example of the derivation for these is as follows: 

Stu = Z 2 PtlP~ 
i ,a j 

r u u 
= Pi Pj - -  Pi  

i = 1  j 

= Sf l , ,  - S ( t+ .  ) 
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Therefore, equations in terms of general S quantities can be expressed 
in terms of S quantities with single subscripts (although this may not 
be the best form for computational accuracy because it involves 
higher indices in the summations). For example, the probability of a 
heterozygote is given above as S~,  but this can also be expressed as 
1 - S  2 (i.e. the probability of not being homozygous). Our other 
example, $22, is S 2 - S ~ ,  i.e. the probability of two homozygous 
individuals, less the probability that they are homozygous for the 
same alleles. Jamieson (1994) also finds that he can express probabili- 
ties of interest in terms of the single-subscripted S quantities (in our 
notation), but derives each specific case. 

Example:  Two-allele case 

The two-allele case has further simplifications. Any S quantity with 
more than two subscripts is zero. We found above that S 11 = 2pq, but 
from the general results, this also equals 1 -  S 2. Now, because 
subscripts are in non-increasing order, 

St u = ffqU + p.qt 
= p ,q , (pt -~ + qt-,,) 

(1 - $2)" 
- 2---- 7 -  SIt- .)  (3) 

which expresses a double-subscripted S quantity in terms of S quanti- 
ties with single subscripts (2 and t -  u), which are numerically no 
larger than either of the original subscripts. 

We can also express all single-subscripted S quantities in terms of 
S 2 as follows. Letting u = 1 in the general result gives St~ =StS t - 
S(t+~ ) = S t -S ( t+a) ;  equating this to Eq. 3 and rearranging yields 
2S(~+ i) = 2S~ - (1 - $2)S(,_ l r  As an example we can use these results 
to simplify Sz2 to (1 - $2)2So/4 = (1 - 82)2 /2  = 2pZq 2 as found previ- 
ously. These relationships allow comparison of the results in this 
article with published results for the two-allele case. 

Situations 

We assume that the parents are randomly sampled from 
a single population (so that the marker has the same 
allele frequencies for sires and dams) that is in Hardy- 
Weinberg equilibrium (or its X-linked analogue, Bulmer 
1980) at the locus of interest. In addition, we assume that 
mating in this population is random, that alleles are 
transmitted to progeny in a Mendelian fashion, that the 
progeny are randomly chosen (the locus is unaffected by 
selection), that there is no mutation at the locus of 
interest and that genotypes are determined without error. 

We examine the situations for autosomal markers 
listed in Table 1, and for X-linked markers listed in 

Table 2. For the purposes of calculating exclusion prob- 
abilities, pseudoautosomal markers are considered as 
autosomal, rather than X-linked. Definitions and deri- 
vations of the exclusion probabilities listed in these 
tables follows. 

Autosonal markers 

Patern i ty  or materni ty  exclusion 

For autosomal markers, the sex of the parent in question 
is irrelevant, so we consider only paternity exclusion; the 
maternity exclusion probability will be the same. The 
general formula for this case of a genetic system control- 
led by a number of autosomal codominant alleles is 
given by Jamieson (1965), and derivations can be found 
in Selvin (1980) or Weir (1990; Table 6.10). The formula 
given by these authors and the corresponding formula in 
our notation are 

1 2 2 
Q1 = ~ p,(1 - pi) 2 - ~ Z Z P, PJ (4 - 3pi - 3p j) 

i ~i~a j 

= S t --  2S  2 -k- S 3 - -  2S22 d-  ~ $ 3 2  At- ~ 5 3 2  

= 1 - 2S  2 -+- S 3 - -  2S22 q- 3S32 

= 1 - 2S 2 + S 3 "]- 2S 4 -- 2S~ - 3S5 + 3S3S2 (4) 

The calculations are repeated here for completeness, 
with the relevant exclusions shown in Table 3. The 
entries for the exclusion probability term column are 

TaMe 1 Situation investigated for autosomal codominant markers 
and definitions of Q1, Q2 and Q3" 

Situation Sire Dam Offspring Exclusion probability b 

Sire, dam known T Y T Q~ 
Dam, sire known Y T Y Q1 
Sire, dam unknown Y N T Q2 
Dam, sire unknown N Y T Qz 
Offspring Y Y T Qa 

"Y = known individual, relationship with other Ys known, N = indi- 
vidual unknown or not genotyped, T = individual whose relationship 
is being tested. Where there is only one Y individual, the roles of Y and 
T can be interchanged 
b See text 

Table  2 Situation investigated 
for X-linked codominant markers 
and definitions of Q4, Q5 and Q6 a 

"Y = known individual, relation- 
ship with other Ys known, 
N = individual unknown or not 
genotyped, T = individual 
whose relationship is being 
tested. Where there is only one 
Y individual, the roles of Y and 
T can be interchanged 
b See text 

Situation Sire Dam Son Daughter Exclusion probability b 

Sire-son, dam known T Y Y 0 
Sire-daughter, dam known T Y Y Q4 
Dam-son, sire known Y T Y Q5 
Dam-daughter, sire known Y T Y Q5 
Sire-son, dam unknown Y N T 0 
Sire-daughter, dam unknown Y N T Q5 
Dam-son, sire unknown N Y T Qs 
Dam-daughter, sire unknown N Y T Qz 
Parent-son Y Y T Qs 
Parent-daughter y Y T Q6 



Table 3 Paternity exclusion for an autosomal marker and a known mother-offspring pair (derivation of Q1) 

969 

Dam Offspring Sire 

Genotype Probability Genotype Probability Included genotypes Excluded probability 

Exclusion 
probability term 

AiAi p2 AiAi Pi AiA i, AiA j (1 - p i )  2 S 3 - 2S, + S 5 
AiAi p2 AiA j p~ AiA j, AjAj, AjAg (1 - p j)2 $ 2 1  - -  2S22 + $32 
AiAj PiPj AiAi Pi AiA i, AiAj, AiA k (1 - pi) 2 $21 --  2S31 + $4-1 
AiAj PiP i AiAj (pi + pi)/2 AiAi, AiAj, AiA k, (1 - p i -  pi) z $21-  2S31- 2S22 

AjAi, AjAk + 2S32 + $41 + $32 
AiAj PiPj AiAk Pk AiA k, AjA k, AkA k, A k A t (1 - pk) 2 $111 -- 2S21J + $31 x 

calculated by multiplying the other probabilities in that 
row and summing over the distinct subscripts. For 
example, the first entry is 

2 P  { • Pi X (1 - pi) 2 = Z p  3 -- 2 p t  + p5 
i i 

= S 3 - 2 S , ,  + S 5 

(5) 

Adding the exclusion probability terms over the possi- 
ble dam-offspring combinations, and using Eq. 2 gives 

Q1 = ($3 - 2S4 + $5) + ( $ 2  - -  $ 3  - 2S2 + 2S4 + $ 3 S 2  

-- $5) q- (S 2 - -  3S 3 + 3S 4 - $5) 

-[- ( S  2 - -  3S 3 + 5S 4 - 4S 5 - 2S 2 + 3S3S2) 

+ (1 - 5 S  2 -~- 7S 3 - 6S  4 -t- 2S s + 2S22 - S 3 S z )  

= 1 - -  2S 2 + S 3 + 2S 4 -- 2S2 z - 3S 5 + 3S3S 2 (7) 

as before. This latter form has also been given by 
Jamieson (1994) (although not in the S-notation). The 
interpretation of the excluded probability for the sire 
given in the first row of Table 3 is that neither of his 
alleles are A i. The same result can be obtained by 

specifying the excluded probability as i minus the prob- 
ability of the genotypes listed in the 'Included genotypes' 
column, e.g. by setting the second last column of the first 
row in Table 3 to 1 - p2 _ 2pipj .  In this case we obtain 

S 3 - S 5 - 2 S 4 1  = S 3 - S 5 - 2 S  4 + 2S 5 

= S 3 - 2S 4 + $5 

which is the same as the first bracketed term in Eq. 7. 
Similar equivalence hold for the other rows in this table, 
and for other such tables that we will investigate. 

Paternity or maternity exclusion, other 
parent unknown 

We refer to this as the single parent-offspring exclusion. 
This has been given by Crawford et al. (1993) and is 
repeated here for completeness and to show its represen- 
tation in the S-notation. The exclusions are listed in 
Table 4. Adding over possible sire genotypes gives 

Q2 = 1 - 4S  2 + 4S a - 3S 4 + 2S 2 (8) 

Table 4 Paternity exclusion 
for an autosomal marker and 
unknown dam (derivation of Q2) 

Sire 

Genotype Probability 

Offspring Exclusion 
probability term 

Included genotypes Excluded probability 

AiAr p2 
A~Aj pipj 

AiAi ,  A i A j  (1 - pi) 2 S 2 - 2S  3 + S ,  
AiAi,  AiA),  AiAk,  (1 - Pi - p j)2 S11 - 2S21 - 2S21 
AjA j ,  A j A  k + $31 -t- $31 + 2S22 

Table 5 Mating types and excluded offspring for a parent pair (derivation of Qa) 

Parents Offspring 

Genotype Probability Included genotypes Excluded probability 

Exclusion probability term 

AiA i x AIA i p4 AiAi 1 _p2 
2 AiA i x A~Aj 4p~pj AiAi, A,A j 1 -Pi  - 2pipj 

A i A  i x A i A  j p2p~ A i A j  1 --  2pipj 

AiA i x A IA k 2pZipjPk AIAj, AiA k 1-2pi(pj+ pk ) 
AiA i x AIA ~ 2p2p 2 A~A i, AiAj, AjAj 1 -- (Pi + pj)2 

X l 2 AiAj AiAk 4p2pJPk AiAi, AiAj, AiAk, AjAk - Pi - 2pipj - 2PiPk -- 2pjpk 
AiA j x AkA z PiPiPkPl AiAk, AiAl, A~A k, AjAt 1 - 2(p i + P)(Pk + Pl) 

S 4 - S 6 

4($31 - -  $51 - 2S42 ) 

$22 - 2S33 

2($211 - 2S321 - 2S321)  

2($22 - $42 - 2S3a - $42 ) 
4($211 - $ 4 1 1 - 2 S 3 2 1 - 2 S 3 2 1  - 2Sza2) 
S l i 1 1 - 2 S 2 2 1 i - 2 S 2 2 1 1 - 2 S 2 z 1 1 - 2 8 2 2 1 1  
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Offsprin9 exclusion 

This refers to the case where the matings are known, and 
therefore the possible parent pairs, but the offspring 
have not been observed at birth, and so the assignment 
to parent pairs is in doubt. To derive the exclusion 
probability we need to consider the seven possible ma- 
ting types (Jamieson 1965). These are shown in Table 5, 
along with the excluded types. 

Adding up the exclusion probabilities, weighted by 
the probability of the mating type gives: 

Q3 = 1 + 4s 4 - 4s s - 3s 6 -- 8S2 2 + 2S~ + 8S3S 2 (9) 

X-linked markers 

Paternity exclusion for sons 

Because a male does not pass his X chromosome to a 
son, he cannot be excluded as the sire using an X-linked 
marker, i.e. the exclusion probability is zero. 

Paternity exclusion for daughters 

For each dam-offspring possibility, the sire alleles that 
can be excluded are the same as for the autosomal case. 

The table becomes that shown in Table 6, and we see 
that the values in the second last column of this table are 
square roots of the corresponding values in Table 3, 
because there is now only one allele to consider for each 
sire. The exclusion probability is 

Q4 = 1 - -  S 2 -1- S 4 - S 2 (10) 

Maternity exclusion for sons 

The (known) genotype of the sire is irrelevant here, as he 
does not pass his X chromosome to a son. The relevant 
exclusions are in Table 7. The exclusion probability is 

Q5 = 1 -  2s 2 + s 3 (11) 

Maternity exclusion for daughters 

The relevant exclusions are in Table 8. These are similar 
to the autosomal maternity (or paternity) exclusion 
where the known parent is homozygous. The exclusion 
probability is the same as that for the previous situation, 
i.e. 

1 - 2S 2 + S 3 = Q5 

Table 6 Paternity exclusion for a X-linked marker and a known dam-daughter pair (derivation of Q4) 

Dam Daughter Sire 

Genotype Probability Genotype Probability Included genotypes Excluded 
probability 

Exclusion 
probability term 

2 AiAi Pi Ai l - P i  AiAi P~ 
AiAi Pi AiAj P2 Aj 1 - p j  
AiAj PiPj AiAi Pi Ai 1-Pi  
AiAj PiPj AiA j (pi+p~/2 A~,Aj 1 - p i - p  j 
AiAj PlPj AiAk Pk Ak 1 --Pk 

S 3 - S 4 

S21 -$22 
$ 2 1 - - $ 3 1  
S21-Sal -$22 
Sll 1 - $211 

Table 7 Maternity exclusion for a X-linked marker and a known sire-son pair (derivation of Qs) 

Sire Son Dam 

Genotype Probability Genotype Probability Included Excluded 
genotypes probability 

Any 1 Ai Pi A~Ai, AiA j 1 - p~ - 2pip j 

Exclusion 
probability term 

S 1 - $ 3 - 2 S 2 1  

Table 8 Maternity exclusion for a X-linked marker and a known sire-daughter pair (alternative derivation of Q5) 

Sire Daughter Dam Exclusion 
probability 

Genotype Probability Genotype Probability Included Excluded term 
genotypes probability 

A~ Pi AiAi Pi AiAi, AiA j (1 -pl) 2 S 2 - 2S 3 + S,, 
Ai Pi AiA i pj AIA~,AjAj, AjA k ( 1  - -  pj)2 S11 _ 2S21 + $31) 



Sire-son exclusion (unknown dam) 

As in the paternity exclusion for sons case we cannot 
exclude a sire-son relationship, so the exclusion prob- 
ability is zero. 

Sire-daughter exclusion (unknown dam) 

The relevant exclusion is in Table 9. The exclusion 
probability is the same as that for maternity exclusion 
for a X-linked marker and a known sire-offspring, i.e. 

1 - 282 + S 3 = Q5 

Dam-son exclusion (unknown sire) 

This is the same exclusion as the maternity exclusion for 
sons, because the genotype of the sire was irrelevant 
there, and so lack of knowledge of this genotype will not 
affect the probability. 

Dam-daughter exclusion (unknown sire) 

This is the same situation as the autosomal case (al- 
though in that case it applied to any sex of parent and 
any sex of offspring) because both dam and daughter 
have two alleles at the X-linked marker. 

Parent-son exclusion 

The genotype of the sire is irrelevant, so the exclusion is 
as for dam-son X-linked exclusions. 
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Parent-daughter exclusion 

The relevant exclusions are in Table 10. The exclusions 
are similar to the autosomal case with a homozygous 
sire. The exclusion probability is 

Q6 = 1 + 2S 4 - -  S 5 - 4S22 + 2S3S 2 (12) 

Discussion 

Comparison of exclusion probabilities 

Comparisons of various exclusion probabilities at differ- 
ent allele frequencies (Figs. 1 and 2) allow several gener- 
alizations to be made. As noted by Selvin (1980) and 
Weir (1990), paternity exclusion for a marker with m 
alleles is greatest when they are at equal frequency. 
Similar arguments show that this is true for all exclusion 
probabilities presented; Fig. 1 demonstrates this for the 
two-allele case. The appendix shows that Q6 > (Q4, 
Q3) > Q5 > Q1 > Q2 for any polymorphic system. This 
allows us to draw some general conclusions. For an 
autosomal marker (1) it is always easier to detect incor- 
rect offspring assignments (i.e. when mating pairs are 
known) than other types of exclusion and (2) paternity 
(or maternity) exclusion is greater with the other parent 
known than unknown, as expected. 

The comparisons also show that for an autosomal 
and an X-linked marker with the same allele frequencies, 
the X-linked marker can provide a greater probability of 
exclusion, depending on the sex of the putative offspring. 
For daughters the X-linked marker always has a greater 
exclusion probability, no matter what situation is being 
tested (except for maternity testing without knowledge 

Table 9 Paternity exclusion 
for a X-linked marker for 
daughters with dam unknown 
(alternative derivation of Qs) 

Sire Daughter Exclusion 
probability term 

Genotype Probability Included Excluded 
genotype probability 

Ai Pi A~A i, A~Aj (1 _p~)2 $1 - 2S2 + $3 

Parents Daughter Exclusion probability 
term 

Table 10 Mating types for an X- 
linked marker and excluded 
offspring for a parent pair 
(derivation of Q6) Genotype Probability Included Excluded 

genotypes probability 

Ai • AiAi P~ AiA i 1-p{  $ 3 - S  5 
A~ x A~Aj 2p{pj A~AI, A ~ A j  1-p~-2p~pj 2($21-$41-2S32 ) 
Aix AjAj PiP} AIAj 1 --2pipj $21 -- 2S32 
Aix AjAk P~jPk AiAj, AIAk 1-2pi(pj+p~ ) $1~ 1 -- 4Se21 



972 

0.5 

Q 6  

,~0.4 
Q4 

..Q 

2 0.3' -Q3 
o, Q5 t -  
Q 

"~= 0.2. QI 

o Lu 0.1. 2 

O. 
ID 011 012 013 014 015 

Allele frequency (rarer allele) 

Fig. 1 Exclusion probabilities for markers with two alleles. See text 
for explanation of QI-Q6 
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Fig. 2 Exclusion probabilities for markers with alleles at equal fre- 
quency. See text for ~xplanation of Qx-Q6 

of the sire where the autosomal and X-linked markers 
have the same exclusion probability). For sons, the 
autosomal marker has a higher exclusion probability 
except for maternity testing, in which case the X-linked 
marker would be better. 

These comparisons demonstrate that for situations in 
which only female offspring are of interest, such as 
progeny testing diary bulls (Van Vteck 1970), addition of 
an X-linked rather than an autosomal marker to a 

marker panel for pedigree testing would be much more 
efficient. Figure 2 shows that in this situation, with 
unknown dams, an X-linked marker with five equally 
frequent alleles gives about the same level of exclusion as 
an autosomal marker with ten equally frequent alleles 
(compare Q5 with Q2)- The obvious drawback of using 
X-linked markers, however, is that paternity testing 
cannot be carried out for sons (zero exclusion probabil- 
ity). 

The results of exclusion probability calculations for 
autosomal situations where one parent is unknown or 
where the mates are assumed known are also found in 
Thompson (1986), but no formulae are given. The first 
line (labelled 'Parental exclusion probability') in her 
Table 13 corresponds to the use of our Q2; however the 
results in her Table 17 ('Parent-pair exclusion probabil- 
ity') do not match the use of our Q3. Meagher and 
Thompson (1986) provide a formula for these exclusion 
probabilities in very general terms. In their notation 
paternity (maternity) exclusion is given by 1 - P(NQQ] 
QU), single parent-offspring exclusion is given by 
1 - P ( N Q  U[ QQ) and offspring exclusion is given by 1 - 
P ( N Q Q t  QQ). The use of the formulae given here match- 
es their calculations for two codominant autosomal loci 
in their Table 1. Thompson (1986) also discusses situ- 
ations such as hypothesized full-sib relationships with 
no information on the parents. Such relationships can- 
not be excluded on the basis of genetic data, and so there 
is not a corresponding exclusion probability. 

It is interesting to note that Q4 is the same as the 
polymorphic information content (PIC) of Botstein 
et al. (t990) because in the notation used here the PIC is 
1 - S;  - $22 = 1 - S z + S 4 - S 2. The PIC is defined to 
be the probability of knowing which of a parent's alleles 
is passed to an offspring. 

An application 

We now examine the use of one of these exclusion 
probabilities in farm pedigree testing situations. Craw- 
ford et al. (1993) examined the recorded pedigrees of 195 
lambs and both of their putative parents with the 
marker MAF36. The marker detected one incorrect 
pedigree. If we assume that the recorded matings are 
correct, then we wish to know the probability of detect- 
ing an incorrect assignment to a parent-pair. The use of 
the lambs' allele frequencies for this marker (0.003, 0.074, 
0.112, 0.036, 0.112, 0.464, 0.153, 0.038, 0.008, 0.073) with 
Q3 suggests that 73.5% of incorrectly assigned lambs 
will be detected. Another way of determining how likely 
an exclusion is is to remove the only excluded assign- 
ment (mating pair plus putative lamb) from the dataset, 
and then compare each mating pair's genotypes with 
those of all the lambs of other parents. The average 
proportion of these which can be excluded is an estimate 
of the chance of detection. These calculations suggest 
that 74.3% of errors should be detected, close to the 
theoretical value given above. This result is shown in 
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ned offspring of known mating pairs for flocks and markers described 
by Crawford et al. (1993). The appropriate exclusion probabilities 
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(Q3), calculated using lamb's allele frequencies or weighted parents' 
allele frequencies, are compared with the average proportion of the 
lambs of other parents which can be excluded 

Flock Marker Q3 

Lambs a Parents b 

Comparison of 
mates and non-progeny 

Stud MAF36 0.756 
Stud MAF209 0.602 
Parasite Flock A Transferrin 0.722 
Parasite Flock A Plasminogen Antigen 0.336 
Parasite Flock A Vitamin D binding protein 0.222 
Parasite Flock B MAF36 0.735 

0.742 
0.590 
0.716 
0.324 
0.224 
0.763 

0.740 
0.618 
0.726 
0.343 
0.278 
0.743 

a Q3 calculated using observed allele frequency in lambs 
b Q3 calculated using weighted observed allele frequency in parents, as described in the text 

Table 11 (where the flock is described as Parasite Flock 
B) along with a comparison using several of the other 
markers and flocks from Crawford et aI. (t993). The use 
of these two methods can be seen to generally produce 
similar results. 

In these examples, the allele frequencies could have 
been calculated in other ways, such as by taking the 
mean of the allele frequencies of the sires and dams, 
weighted by the number of offspring they have. This 
might help account for a relatively small number of sires 
for the dataset. When this is done for MAF36 in Parasite 
Flock B, the theoretical exclusion rate becomes 76.3%. 
Other examples using data from Crawford et al. (1993) 
are also shown in Table I1. 

Multiple markers 

Most applications of pedigree testing will use more than 
one marker. If the set of markers is independently 
segregating, then the probability of being compatible at 
all loci is the product of the probabilities of being 
compatible at each locus (Boyd 1954; Weir 1990). For 
example, if Qtk is the paternity exclusion for the kth 
locus, then the combined paternity exclusion probabil- 
ity is 

Q1 = 1 - l - [  ( 1  - Qlk) 
k 

Jamieson (1994) presents a table to illustrate that for the 
same total number of alleles, exclusion based on 
multiple polymorphic loci is higher than when based on 
a single locus. 

It may be desirable to require exclusion at more than 
one locus to reduce the effect of possible genotyping 
errors or mutation (Chakraborty et al. 1974; Cha- 
kraborty and Schull 1976) or of unknown null alleles 
(Pemberton et al. 1995). In this case, the multiple locus 
exclusion probability will be reduced by the probability 
of exactly one exclusion, so that the paternity exclusion 

probability becomes 

Q1 = 1 --1--I(1 --Qlk)--~Qlk 1-I( 1 --Qaz) 
k k Iv~k 

(Chakraborty et al. 1974). For example, if we have loci 
with two, three and four equally frequent alleles, then the 
paternity exclusion probabilities requiring one and 
more than one exclusion are 0.746 and 0.281 respective- 
ly. With more markers it is likely that this difference will 
decrease (see Chakraborty et al. 1974 for another 
example). 

Violation of assumptions 

The formulae presented depend on a number of assump- 
tions, many of which may not be strictly true for some 
farmed animal populations. The previous section has 
shown how to reduce the chance of false exclusions due 
to mutation and genotyping errors. We have also given 
an application in sheep pedigrees, where Q3 appears to 
be consistent with a method which is applicable without 
the assumptions. These examples have also shown that 
the assumption of the sires and dams being random 
members of the same population does not appear to be 
too critical in practice. This is supported by McCoubrey 
et al. (1983) who found little difference between using 
sire allele frequencies weighted or unweighted by the 
number of their offspring when fitting likelihood models 
to estimate error rates. One should use care, however, in 
choosing allele frequency estimates for these calcula- 
tions, as they may vary between different breeds or 
subpopulations. 

There may be instances where the assumptions are 
known to be violated to such as extent that the formulae 
will be in serious error, and their application in these 
situations would be unwise. If the sire and dam popula- 
tions are quite distinct, formulae that allow different 
allele frequencies for the sire and dam populations could 
be developed, as has been done for paternity exclusion 
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Table A1 Representation of exclusion probability differences as 
sums of positive S quantities. The first column displays the inequality 
being investigated. The second column displays the difference be- 
tween the exclusion probabilities, expressed in terms of single-sub- 
scripted S quantities. The third column shows the same difference, 

expressed as the sum of S quantities. S quantities with five subscripts 
are defined analogously to those with fewer subscripts [as in Eq. 1] 
and may be represented as a linear combination of S quantities with 
four or fewer subscripts following the pattern shown in Eq. 2 

Inequality Difference 

Form 1 Form 2 

Q6 > Q4 
Q6 > Q3 
Q~ > g5 
Q3 > g5 

~5 > Q1 

Q, > Q2 

S# - S 5 + S 2 - 3S~ + 2 S 3 S  2 

3S  6 + 3S 5 - 2 S  4 + 4S~ - 2S~ - 6 S 3 S  2 

S 4 - S  3 + S 2 - S~ 
4 S  4 - 4S 5 - 3S  6 - S 3 + 2 S  2 - 8S~ 

+ 8 S 3 S  2 + 2S~ 

3S 5 - 2S4  + 2S~ - 3S3S 2 
- 3S s + 5S 4 - 3S 3 + 2S 2 - 4S~ + 3 S 3 S  2 

$2111 ~- 3S311 d- Sj,1 
$41I + 2S3za + 4Sz21 + 3S42 d- $41 

$211 + $31 
$32111 + 4-$22111 + 2S21111 + 2S4211 

+ 3S3311 + $32zl + 12S3zl1 + 7S3111 
q- 6S222J + $521 q-$511 -~-5S431 
+ 3S421 4" 5S~11 d- 4S331 d- S6t d- S~,3 

2S221 + $32 

2S2111 -}- 3S311 -- 2S22J. + $41 

by Chakraborty et al. (1988). The population may be 
known to be highly inbred, or conversely, the parents or 
the progeny may have been produced by an outcross. 
The number of possible sires may be limited, rather than 
a random sample from the populations. For these cases, 
formulae could also be derived in a similar manner to 
those of this paper, incorporating inbreeding as well as 
allele frequency effects on the genotype frequencies or by 
taking the exactly family structure into account. Alter- 
natively, the method used by Usha et al. (1995) for 
paternity exclusions, using genotype rather than allele 
frequencies, could be adapted to the various pedigree 
testing situations. MacCluer and Schull's (1963) calcula- 
tions of paternity exclusions, for case where the biologi- 
cal or putative parents are related, could be extended to 
other pedigree testing situations. Finally, the probabili- 
ties could be in serious error if the same markers are 
being used simultaneously for pedigree checking and 
marker-assisted selection, and further studies are needed 
to quantify such effects. 

With the exception of extreme situations, where gross 
violations of the assumptions have occurred, the exclu- 
sion probabilities presented here will be of practical use 
for the variety of situations examined. They will aid 
investigators who are designing pedigree testing systems 
for farmed animals, although it would be prudent to use 
conservative exclusion levels to offset violations of the 
assumptions that may occur in practice. 
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Appendix 

Exclusion probability inequalities 

To show that the one exclusion probability is at least as large as 
another, it is sufficient to show that their difference (largest minus 
smallest) can be written as the sum of S quantities. As each of these is 
the sum of non-negative numbers (products and powers of allele 

frequencies), the sum of such quantities is also non-negative. Table A1 
shows that this can be done for the inequalities referred to in the text 
of this article. In addition, because each row of the last column in the 
table contains a double-subscripted S quantity, the differences are 
strictly positive if there are at least two alleles in the system. 
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